Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.030
Filtrar
1.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574145

RESUMO

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Assuntos
Fímbrias Bacterianas , Fagos de Pseudomonas , Pseudomonas aeruginosa , Vírus de RNA , Internalização do Vírus , Humanos , Microscopia Crioeletrônica , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/virologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/virologia , Vírus de RNA/química , Vírus de RNA/fisiologia , Fagos de Pseudomonas/química , Fagos de Pseudomonas/fisiologia , Proteínas Virais/metabolismo
2.
Science ; 384(6691): 100-105, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574144

RESUMO

Phage viruses shape the evolution and virulence of their bacterial hosts. The Salmonella enterica genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNALeu. The ensuing RNA fragmentation compromises bacterial translation, intracellular survival, and recovery from oxidative stress in the vertebrate host. S. enterica adapts to this transfer RNA (tRNA) fragmentation by transcribing the RNA repair Rtc system. The counterintuitive translational arrest provided by tRNA cleavage may subvert prophage mobilization and give the host an opportunity for repair as a way of maintaining bacterial genome integrity and ultimately survival in animals.


Assuntos
Endodesoxirribonucleases , Prófagos , Fagos de Salmonella , Salmonella enterica , Proteínas Virais , Animais , Endodesoxirribonucleases/metabolismo , Estresse Oxidativo , Prófagos/enzimologia , Prófagos/genética , RNA , RNA de Transferência , Salmonella enterica/genética , Fagos de Salmonella/enzimologia , Fagos de Salmonella/genética , Proteínas Virais/metabolismo
3.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572740

RESUMO

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Assuntos
Herpesvirus Humano 1 , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , Vírion/genética , Vírion/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Arkh Patol ; 86(2): 22-29, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591903

RESUMO

BACKGROUND: Extracellular vesicles are surrounded by a phospholipid bilayer, carrying various active biomolecules and participating in many physiological and pathological processes, including infectious ones. OBJECTIVE: To research the role of exosomes in intercellular interactions in the pathogenesis of various types of lung damage in fatal cases of COVID-19. MATERIAL AND METHODS: We conducted a clinical and morphological analysis of 118 fatal cases caused by coronavirus infection in Moscow. We selected 32 cases with morphological signs of various types of lung lesions for immunohistochemical reaction (IHC) with antibodies against tetraspanin proteins (CD63, CD81), which are involved in the assembly of exosomes, as well as with antibodies against viral proteins: nucleocapsid and spike protein. We determined the main producing cells of extracellular vesicles and cells containing viral proteins, carried out their comparison and quantitative analysis. RESULTS: IHC reaction with antibodies against CD63 showed cytoplasmic granular uniform and subapical staining of cells, as well as granular extracellular staining. We determined similar staining using antibodies against viral proteins. Extracellular vesicles were found in the same cells as viral proteins. The main producing cells of vesicles and cells containing viral proteins were found to be macrophages, type II pneumocytes, and endothelial cells. CONCLUSION: Taking into account the results of the literature, the localization of viral proteins and extracellular vesicles in the same cells indicates the key role of vesicles in the pathogenesis of various forms of lung damage by the SARS-CoV-2 virus, in the dissemination of the pathogen in the organism, which leads to interaction with the adaptive immune system and the formation of immunity.


Assuntos
COVID-19 , Exossomos , Lesão Pulmonar , Humanos , Exossomos/química , Exossomos/metabolismo , COVID-19/metabolismo , Lesão Pulmonar/metabolismo , SARS-CoV-2 , Células Endoteliais , Proteínas Virais/análise , Proteínas Virais/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
6.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
7.
Commun Biol ; 7(1): 462, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627534

RESUMO

Plant viruses evolves diverse strategies to overcome the limitations of their genomic capacity and express multiple proteins, despite the constraints imposed by the host translation system. Broad bean wilt virus 2 (BBWV2) is a widespread viral pathogen, causing severe damage to economically important crops. It is hypothesized that BBWV2 RNA2 possesses two alternative in-frame translation initiation codons, resulting in the production of two largely overlapping proteins, VP53 and VP37. In this study, we aim to investigate the expression and function of VP53, an N-terminally 128-amino-acid-extended form of the viral movement protein VP37, during BBWV2 infection. By engineering various recombinant and mutant constructs of BBWV2 RNA2, here we demonstrate that VP53 is indeed expressed during BBWV2 infection. We also provide evidence of the translation of the two overlapping proteins through ribosomal leaky scanning. Furthermore, our study highlights the indispensability of VP53 for successful systemic infection of BBWV2, as its removal results in the loss of virus infectivity. These insights into the translation mechanism and functional role of VP53 during BBWV2 infection significantly contribute to our understanding of the infection mechanisms employed by fabaviruses.


Assuntos
Fabavirus , Vírus de Plantas , Fabavirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus de Plantas/genética
8.
PLoS Pathog ; 20(3): e1012064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437247

RESUMO

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.


Assuntos
Potyvirus , Proteínas Virais , Proteínas Virais/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Potyvirus/metabolismo , Doenças das Plantas
9.
Viruses ; 16(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543711

RESUMO

Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.


Assuntos
Proteínas Viroporinas , Vírus , Proteínas Viroporinas/metabolismo , Proteínas Virais/metabolismo , Canais Iônicos/metabolismo , Imunidade Inata
10.
J Virol ; 98(4): e0170123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451084

RESUMO

Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Animais , Humanos , Adenovírus Humanos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas E1B de Adenovirus/metabolismo , Proteínas Virais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mamíferos
11.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457341

RESUMO

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Assuntos
Poxviridae , Replicação Viral , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Poxviridae/genética , Vírus Vaccinia/fisiologia , Proteínas Virais/metabolismo , Microtúbulos/metabolismo , Antivirais/metabolismo
12.
Cell Rep ; 43(3): 113849, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427560

RESUMO

CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.


Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Bactérias/metabolismo , Lisogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498560

RESUMO

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
14.
Mol Biol Cell ; 35(5): ar62, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507240

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Interferons/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
15.
Front Immunol ; 15: 1355153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426094

RESUMO

Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Camundongos , Animais , Citomegalovirus , Apresentação de Antígeno , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Proteínas Virais/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
16.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474070

RESUMO

The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.


Assuntos
Citomegalovirus , Herpesviridae , Citomegalovirus/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo , Herpesviridae/metabolismo , Fosforilação , Simplexvirus/metabolismo , Núcleo Celular/metabolismo
17.
J Agric Food Chem ; 72(11): 5699-5709, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462724

RESUMO

Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 µmol/L (measured by microscale thermophoresis) and 4.01 µmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.


Assuntos
Potyvirus , Quinazolinas , Solanum tuberosum , Potyvirus/genética , Simulação de Acoplamento Molecular , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genoma Viral , Solanum tuberosum/metabolismo , Doenças das Plantas
18.
J Bacteriol ; 206(3): e0038423, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426721

RESUMO

Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE: The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.


Assuntos
Bacteriófagos , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bactérias/genética , Antibacterianos/metabolismo , Parede Celular/metabolismo , Metagenômica , RNA/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
19.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470932

RESUMO

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Assuntos
Ferroptose , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Sirtuína 3 , Ratos , Animais , Herpesvirus Humano 8/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Transformação Celular Neoplásica , Proteínas Virais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484009

RESUMO

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Assuntos
Tombusvirus , Tombusvirus/fisiologia , Saccharomyces cerevisiae/genética , Membranas Intracelulares/metabolismo , Replicação Viral/fisiologia , Fosfolipídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Autofagia , Organelas/metabolismo , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...